## TMP04CH01FXXX (JTMP04CH01XXXS)

## CMOS 4 bit LL Microcontroller

(LL: Low power consumption \& Low voltage operation)

The TMP04CH00FXXX is a high-performance microcontroller designed to be in a variety of low-voltage products.

It is a 4 bit CMOS LL microcontroller with integrated a 4 bit high-performance CPU, memory (static work RAM and program ROM). LCD display LL controller driver, and a multi-function timer into a single chip.

The basic features are as follows.

## Features

- Number of instructions: 56


Weight: 1.65 g (typ.)

- Minimum instruction execution time: $61 \mu \mathrm{~s}$ (at 32.768 kHz )

$$
1 \mu \mathrm{~s}(2 \mathrm{MHz/3.0} \mathrm{~V})
$$

- Oscillating circuit : Iow speed-crystal oscillator ( 32.768 kHz )/internal CR ( 33 kHz at 1.5 V ) high speed-crystal oscillator ( 2 MHz at 3.0 V )/external CR ( 200 kHz at 1.5 V )
- Built-in ROM size : 16 K words ( 1 word $=16$ bits)
- Built-in RAM size : Work RAM : $512 \times 4$ bits
- Input pins : 4 pins (with interrupts)
- I/O pins : 12 pins (with 4 interrupts and mask option)
- Output pins : 1 pin (Buzzer)
- Interruption : 2 external system (input pins, general purpose I/O pin) 2 internal system (timer/counter, timings)
- Timer : 8 bits $\times 2$ ch or 16 bits $\times 1$ ch (software-selectable)
- LCD display driver controller: 52 seg $\times 16$ com
- Built-in LCD driver power circuit
- Watchdog timer
: Timer/Counter can be used as Watch Dog Timer
- Power supply voltage $: 1.5 / 3.0 \mathrm{~V}$ (typ.) Mask option


Figure 1 Block diagram

## Pin Configuration

## 1. Pin Assignment



| Pin No. | Pin Name |
| :---: | :---: |
| 1 | $\mathrm{V}_{1}$ |
| 2 | $\mathrm{C}_{1}$ |
| 3 | $\mathrm{C}_{2}$ |
| 4 | $\mathrm{V}_{\text {SS }}$ |
| 5 | $\mathrm{V}_{\mathrm{XT}}$ |
| 6 | BRESET |
| 7 | XLIN |
| 8 | XLout |
| 9 | $V_{\text {DD }}$ |
| 10 | $\mathrm{XH}_{\text {IN }}$ |
| 11 | XHOUT |
| 12 | TEST |
| 13 | BZ |
| 14 | IN1 |
| 15 | IN2 |
| 16 | IN3 |
| 17 | IN4 |
| 18 | 1001 |
| 19 | 1002 |
| 20 | 1003 |
| 21 | 1004 |
| 22 | 1011 |
| 23 | 1012 |
| 24 | 1013 |
| 25 | 1014 |


| Pin No. | Pin Name |
| :---: | :---: |
| 26 | 1021 |
| 27 | 1022 |
| 28 | IO23 |
| 29 | IO24 |
| 30 | $\mathrm{S}_{1}$ |
| 31 | $\mathrm{S}_{2}$ |
| 32 | S3 |
| 33 | S4 |
| 34 | $\mathrm{S}_{5}$ |
| 35 | $\mathrm{S}_{6}$ |
| 36 | $\mathrm{S}_{7}$ |
| 37 | $\mathrm{S}_{8}$ |
| 38 | S9 |
| 39 | $\mathrm{S}_{10}$ |
| 40 | $\mathrm{S}_{11}$ |
| 41 | $\mathrm{S}_{12}$ |
| 42 | $\mathrm{S}_{13}$ |
| 43 | $\mathrm{S}_{14}$ |
| 44 | $\mathrm{S}_{15}$ |
| 45 | $\mathrm{S}_{16}$ |
| 46 | $\mathrm{S}_{17}$ |
| 47 | $\mathrm{S}_{18}$ |
| 48 | $\mathrm{S}_{19}$ |
| 49 | $\mathrm{S}_{20}$ |
| 50 | $\mathrm{S}_{21}$ |


| Pin No. | Pin Name |
| :---: | :---: |
| 51 | $\mathrm{S}_{22}$ |
| 52 | $\mathrm{S}_{23}$ |
| 53 | $\mathrm{S}_{24}$ |
| 54 | $\mathrm{S}_{25}$ |
| 55 | $\mathrm{S}_{26}$ |
| 56 | S27 |
| 57 | $\mathrm{S}_{28}$ |
| 58 | $\mathrm{S}_{29}$ |
| 59 | $\mathrm{S}_{30}$ |
| 60 | $S_{31}$ |
| 61 | S32 |
| 62 | $\mathrm{S}_{33}$ |
| 63 | $\mathrm{S}_{34}$ |
| 64 | $\mathrm{S}_{35}$ |
| 65 | $\mathrm{S}_{36}$ |
| 66 | $S_{37}$ |
| 67 | $\mathrm{S}_{38}$ |
| 68 | $\mathrm{S}_{39}$ |
| 69 | $\mathrm{S}_{40}$ |
| 70 | $\mathrm{S}_{41}$ |
| 71 | S42 |
| 72 | $\mathrm{S}_{43}$ |
| 73 | S44 |
| 74 | $\mathrm{S}_{45}$ |
| 75 | $\mathrm{S}_{46}$ |


| Pin No. | Pin Name |
| :---: | :---: |
| 76 | S47 |
| 77 | $\mathrm{S}_{48}$ |
| 78 | S49 |
| 79 | $\mathrm{S}_{50}$ |
| 80 | $\mathrm{S}_{51}$ |
| 81 | $\mathrm{S}_{52}$ |
| 82 | COM16 |
| 83 | COM15 |
| 84 | COM14 |
| 85 | COM13 |
| 86 | COM12 |
| 87 | COM11 |
| 88 | COM10 |
| 89 | COM9 |
| 90 | COM8 |
| 91 | COM7 |
| 92 | COM6 |
| 93 | COM5 |
| 94 | COM4 |
| 95 | COM3 |
| 96 | COM2 |
| 97 | COM1 |
| 98 | $\mathrm{V}_{4}$ |
| 99 | $\mathrm{V}_{3}$ |
| 100 | $\mathrm{V}_{2}$ |

2. Pin Description

| Pin Name |  |
| :--- | :--- |
| $V_{\text {DD }}$ | Power supply ( + ) |
| $V_{S S}$ | Power supply ( - ) |
| $V_{X T}$ | Voltage regulator1 output (output for only the mask option 3.0 V type) |
| $V_{1}$ | Voltage regulator2 output |
| $V_{2}$ to $V_{4}$ | Boosted voltage output |
| $C_{1}, C_{2}$ | Capacitor pin for LCD booster |
| XHIN $^{\prime}$, XHOUT | Crystal/resister connection pin for high-speed oscillator |
| XLIN, XLOUT | Crystal connection pin for low-speed oscillator |
| IN1 to IN4 | Input port (with interruption) |
| IO01 to IO04 | I/O port (with interruption) |
| IO11 to IO14 | I/O port |
| IO21 to IO24 | I/O port |
| SEG1 to SEG52 | LCD segment output |
| COM1 to COM16 | LCD common output |
| BZ | Buzzer output |
| BRESET | Reset input (low active) |
| TEST | Test input |

## Memory Map

## 1. Program ROM

Program ROM consists of 16 bits 1 word. Op-code and operand are executed in one word units. Program ROM consists of 4 K words per page. The internal program ROM area is 4 pages ( 16 K words).
This program ROM area can be used for constant data ROM. In this case, it can be used in byte units (1 byte $=8$ bits).


Figure 2 Program memory map

Note: Use the CALL instruction to write the interrupt entry address. Write NOP for unused interrupts

| Example: | CALL A | ; INT0 |
| :--- | :--- | :--- |
|  | NOP | ; INT1 |
|  | CALL B | ; INT2 |
|  | NOP | ; INT3 |
|  | NOP | ; INT4 |
|  | NOP | INT5 |
|  | NOP | ;INT6 |

## 2. Work RAM



Figure 3 Work RAM

Work RAM consists of $512 \times 4$ bits.
R/W is performed at the address specified by bellows.
(1) Indirectly addressing mode (Figure 4 (a)) DMB in F-reg, H, L-reg specify the Work RAM address. (DMB: bank, H-reg : page, L-reg: address)

LD A, M: A $\leftarrow$ RAM (HL)
(2) Directly addressing mode (Figure 4 (b)) I mmediate data (8 bits) in instruction specify the Work RAM page and address.
Bank is specified by DMB in F-reg.

## LDI $2 C H, O A H: R A M(2 C H) \leftarrow A H$


(a) Indirectly addressing

(b) Directly addressing

(c) Index addressing

Figure 4 Addressing mode

BANK 0, PAGE 8 to F area can be used as Stack area.
When using the "CALL/CALLS" instruction or start the interruption routine, the data of program counter and Program memory bank are stored in Stack area.
Then, using "RET" instruction, program return according to those data.
And, using "PUSH" instruction, 8 bits data in a pair register can be stored in Stack area.
Then, using "POP" instruction, those data are returned to the register.
Maximum Stack area is 64 ( 0 to 63), and each Stack area consist of 8 bits.

## 3. Data RAM

TM P04CH01F XXX has Display RAM, and addressing and data read/write is decided by Register file, as follows. When the data is read from/written into Display RAM. DRCE (PC6-bit2) is needed to be 1.


Addressing is decided by DRR1 to DRR4 (PD4) and DRC1 to DRC3 (PD5) (LSB is DRR1, and MSB is DRC3)


PD4

| DRR4 | DRR3 | DRR2 | DRR1 |
| :--- | :--- | :--- | :--- |

Data is read/written by 8 bits which is set in DRD1 to DRD8 (PD6, PD7).
To read from/written into DISPLAY, only 8 bits transference instruction can be used.


## CAUTION:

1. When "HALT" instruction is executed for the next instruction of the transference the data to Display RAM, the data of Display RAM is broken.
2. When "HALT" instruction is executed during DRCE is 1 , the data of Display RAM is broken. Therefore, be sure to set DRCE to 0 before executing the HALT instruction. DRD1 to 8 (PD6, PD7) are valid for only 8-bit transfer instructions.


Figure 5 Display RAM


Figure 6 LCD driver

## Register File

Register files consist of (1) general-purpose registers, (2) system registers, and (3) peripheral I/O registers. Figure 6 shows the overall configuration of register files.

## 1. General Register

1. Flag Register: $\quad$-Register (PAGE/AD $=0 / 0$ )

## F-Register

| R00 | 3 | 2 | 1 | 0 | LSB |
| :---: | :---: | :---: | :---: | :---: | :---: |
|  | DMB | (0) | ZF | CF |  |

CF : Carry Flag
ZF : Zero Flag
(0) : Not use

DMB : Work RAM Bank
2. Accumulater Register: A-Register (PAGE/AD $=0 / 1$ )

Accumulator for arithmetic operations.
When consecutive instructions are executed, used as a counter register.
3. H.L Register (PAGE/AD = 0/3 to 2)
H.L Register are used for Work RAM address setting with DMB.


| L-Register |  |  |  |  |  |
| :---: | :---: | :---: | :---: | :---: | :---: |
|  | 3 | 2 | 1 | 0 | LSB |
| R02 | LR3 | LR2 | LR1 | LRO |  |

Work RAM address
4. Bank Register (PAGE/AD = 0/7): B-Register
$B-$ Register is used for ROM page.

$0000=$ Page 0
0001 = Page 1
0010 = Page 2
0011 = Page 3
5. E-Register, D-Register, P-Register (B-Register) (PAGE/AD $=0 / 4,0 / 5,0 / 6,0 / 7$ )

General purpose register.
When using ROM as Data Table F unction, B, P, D, E-Register are used for ROM address setting. (Data table function: user can use ROM area for store the constant, and can access those constant by LDBL and LDBH instruction.)

## 2. System Registers

1. $\quad$ Stack pointer (PAGE/AD $=1 / 0,1 / 1$ )

The stack pointer shows the location ( 63 to 0 ) in the stack area in work RAM.

| MSB 3 |
| :---: |


2. Interrupt E nable/Disable Registers (PAGE/AD = 1/2, 1/3)

E nable/disable interrupts. There are five interrupt vectors (INT0 to INT4). Writing data in the bit corresponding to an interrupt enables/disables the interrupt. The details are described in the section on peripheral circuits.

3. Input/Output Registers (PAGE/AD = $1 / 4,1 / 5$ )

Used for the input/output pins (IO11 to IO14, IO21 to IO24). Using the bit that corresponds to a pin, output data can be set or input data can be read. The details are described in the section on peripheral circuits.


| MSB 3 |  | 2 | 1 | 0 |
| :---: | :---: | :---: | :---: | :---: |
| R15 | 1024 | 1023 | 1022 | 1021 |

## 3. Peripheral I/O Registers

Registers used to control peripheral circuits specific to the product are allocated to pages 2 to 7 . The details are described in the section on peripheral circuits.

Note: A precaution relating to Writes to System Registers/Peripheral I/O Registers.
Writing to System Register and I/O Registers is performed in synchronization with $\phi \mathrm{W}$. Because rising edges of $\phi W$ coincides with the timing at which Write data is output on the data bus, it is possible that incorrect data is output to the peripheral circuits for a very short period of time. Please take this into account when programming.




F1


F3


Register write timing ( $\phi \mathrm{W}$ )



Figure 7 Register file

## Peripheral Circuit

Each peripheral circuits can be accessed (Read/Write/Circuit setting) by Register files.

## 1. Oscillator Block



The CPU clock is generated by the asynchronous oscillator switching circuit which has low-speed and high-speed clock oscillator circuit.
This block also provides the dock for the timer circuit, LCD driver, Quadrupler.
Oscillation mode is controlled by Register files "CPMODE1" and "CPM ODE2" (PAGE/AD = 2/6), as follows.

| CPMODE <br> 1 | CPMODE <br> 2 | Low- <br> speed <br> OSC | High- <br> speed <br> OSC | System <br> CP | Mode <br> Name |
| :---: | :---: | :---: | :---: | :---: | :---: |
| 0 | 0 | OFF | OFF | OFF | (CPM0) |
| 1 | 0 | ON | OFF | Low-speed | (CPM1) |
| 0 | 1 | OFF | ON | High-speed | $($ CPM2) |
| 1 | 1 | ON | ON | High-speed | $(C P M 3)$ |

CPMODE 1,2 are initially 1 (CPM3).
"LOWCP" is the display clock control bit. When "LOWCP" is set to 1 , Low-speed OSC clock is supplied to LCD circuit. "LOWCP" is initially " 0 ". Even if LOWCP is set to 1 , clock cannot be occupied to display circuit during Low-speed OSC stopped, and display cannot be shown.
Low-speed OSC circuit can select X'tal or internal CR oscillation by Mask option.
High-speed OSC circuit can select X'tal or external CR oscillation by Mask option.
Setting a register to CPM 1 and executing a HALT instruction sets the mode to Halt (system CP off, high-speed oscillator off, low-speed oscillator on). Setting a register to CPM0 and executing a HALT instruction sets the mode to Stop (system CP off, high-speed oscillator and low-speed oscillators off). Even if, mode is changed to MODE 0 from MODE $1 / 2 / 3$, there are no changing until use "HALT" instruction. The High/Low-speed OSC circuit has WARM UP function.
The warm-up function disables the crystal oscillator as the system dock from when the crystal oscillator starts oscillation to when the frequency stabilizes. The warm-up circuit in the high-speed crystal oscillator circuit consists of a 15 -stage binary counter. The warm-up time is 16,384 pulses of the high-speed clock. The warm-up circuit in the low-speed crystal oscillator circuit consists of a 9-stage binary counter. The warm-up time is 256 pulses of the high-speed clock.
The low-speed oscillation does not have enough warm-up time, therefore, when the oscillation is started, software need to make warming up time enoughly.
Set the warm-up time by software to approx. 500 ms as standard.
When the System CP is changed between Low and High (CPM $1 \rightarrow$ CPM $2 / 3$ or CPM $2 \rightarrow$ CPM1), changing System CP waits to finish the warming up time.
Also that until the system CP is changed, instructions are executed with the previous system CP.
If the CR oscillator is selected as the high- or low-speed oscillator circuit, the warm-up function is disabled.


Note 1:Low-Speed Clock warm-up
If X'tal oscillation circuit is selected for low-speed oscillation, it takes some time before low-speed oscillation is used for system clock.

Note 2: High-Speed Clock warm-up
If X'tal oscillation circuit is selected for high-speed oscillation, it takes some time before high-speed oscillation is used for system clock.

Figure 8 Mode transition

TMP04CH01FXXX has 21 bits Divider.
The divider circuit of bits 1 to 6 generates a clock from 1 MHz to 32 kHz by dividing the high-speed clock
 clock. When the low-speed oscillator circuit is on (CPM 1/CPM3), a low-speed dock ( 32 MHz ) is supplied to the divider circuit of bits 7 to 21 . When the low-speed oscillator circuit is off (CPM2), output from bit 6 is supplied.


Figure 9 Divider circuit

The reset for this Divider circuit is done by Register file RST1 to RST4 (PA7W).

| MSB 3 |  | 2 | 1 | 0 |
| :---: | :---: | :---: | :---: | :---: |
| PA7W | RST4 | RST3 | RST2 | RST1 |


| RST1: Binary counter | 1 to 6 | $(2 \mathrm{M} \mathrm{to} 32 \mathrm{kHz})$ | reset |
| :--- | :--- | :--- | :--- |
| RST2: Binary counter | 7 to 12 | $(16 \mathrm{k}$ to 512 Hz$)$ | reset |
| RST3: Binary counter | 13 to 17 | $(256 \mathrm{~Hz}$ to 16 Hz$)$ | reset |
| RST4: Binary counter | 18 to 21 | $(8 \mathrm{~Hz}$ to 1 Hz$)$ | reset |
|  |  |  | (when using $2 \mathrm{MHz}, 32 \mathrm{kHz}$ crystal) |

## CAUTION:

1. Do not set System CP to low speed when the Low-speed OSC is not in operation or before stable.
2. Do not set System CP to high speed when the High-speed OSC is not in operation or before stable.
3. And, when Low-speed OSC is on, low-speed frequency is supplied from 7th bit Divider circuit (when use 2 MHz crystal for High-speed OSC and 32 kHz crystal for Low-speed OSC and the mode is CPM3, 1 MHz to 32 kHz are made by 2 MHz crystal, 16 kHz to 1 Hz are made by 32 kHz crystal. And when the mode is CPM2, all frequency are made by 2 MHz crystal. Therefore if the mode change between CPM1 and CPM2 or CPM2 and CPM3, the frequency which is supplied by Binary counter 7 to 21 shift the timing).
4. When operated with a 1.5 V power supply, the oscillation frequency on the high-speed side is 200 kHz (max), so that the output of binary counter 6 is 3.125 kHz (max).
Consequently, if the mode is changed from CPM1 or CPM3 to CPM2 or from CPM2 to CPM1 or CPM3, the generated timing changes greatly.
5. When the crystal oscillator circuit is used for low-speed oscillation, a long time is required from oscillation stop to oscillation start. The LCD circuit operates using a low-speed clock. LCD cannot be performed until oscillation starts. After power on, operate the low-speed oscillator circuit at all times and do not change to STOP mode.

## Example 1

START mode (After warming up, program start at address 0000.)
$\downarrow$
CPM 3 (High/Low speed ON, SYSCP = High, LOWCP OFF)
$\downarrow$ LD 260, 7H
CPM 3 (High/Low speed ON, SYSCP = High, LOWCP ON)
$\downarrow \quad$ LD 260, 4H
CPM 0 (High/Low speed ON, SYSCP = High, LOWCP ON)
(There are no change after shift to CPMO)
$\downarrow$ HALT
STOP mode (High/Low-speed OSC, STOP, SYSCP OFF, LOWCP OFF)
When an interruption occurs, the mode is changed to START mode and program start at the address which is decided by each interruption (refer to Figure 2).

## Example 2

START mode (After warming up, program start at address 0000.) $\downarrow$

CPM3 (High/Low speed ON, SYSCP = High, LOWCP OFF)
$\downarrow \quad$ LD 260,5H
CPM 1 (Low speed ON, SYSCP = low, LOWCP ON)
$\downarrow$ HALT
HALT mode (High speed OSC OFF, Low-speed OSC ON, SYSCP OFF, LOWCP ON)

When an interruption occurs, the mode is changed to slow mode (CPM1) and program start at the address which is decided by each interruption.

Example 3
START mode (After warming up, program start at address 0000.)
$\downarrow$
CPM 3 (High/Low speed ON, SYSCP = High, LOWCP OFF)
$\downarrow$ LD 260, 7H
CPM 3 (High/Low speed ON, SYSCP = High, LOWCP ON)
$\downarrow$ LD 260, 4H
CPM 0 (High/Low speed ON, SYSCP = High, LOWCP ON)
(There are no change after shift to CPM 0 .)
$\downarrow \quad$ LD 260, 7H
CPM 3 (High/Low speed ON, SYSCP = High, LOWCP ON)
Example 4 (After reset)


Example 5 (CPM3 $\rightarrow$ 1)


Note: $\quad$ No warm-up is provided for high-speed and low-speed RC oscillations by mask options.


Figure 10 Oscillator circuit/Divider circuit

## 2. Interruption Block

Interruption is supplied by IN1to IN 4, IO01 to IO04, Timer/Counter, Timing.
(Interruption priority)
Interruption priority can be selected by Register file P1 and P2.
Interrupt priority is valid only when multiple interrupts occur simultaneously.
P1 and P2 are initially 0.


| P1 | P2 | INT0 | INT1 | INT2 | INT3 | INT4 |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| 0 | 0 | IIN | IOIN | TIN | TCIN1 | TCIN2 |
| 1 | 0 | IOIN | IIN | TIN | TCIN1 | TCIN2 |
| 0 | 1 | TIN | IIN | IOIN | TCIN1 | TCIN2 |
| 1 | 1 | TCIN1 | IIN | IOIN | TIN | TCIN2 |
|  |  |  |  |  |  |  |
|  |  |  |  | Priority |  | (Lower) |

IIN: IN1 to IN4, IOIN: IO01 to IO04, TIN: TIMING, TCIN1/2: TIMER/COUNTER1/2
(Interruption enable/disable)
Each interruption (IIN, IOIN, TIN, TCIN1, TCIN2) is decided enable/disable as follows.

| IIN $:$ IIE1 to IIE4 | (R42-BIT 0 to 3) |
| :--- | :--- | :--- |
| IOIN : IOIE0 | (R43-BIT 0) |
| TIN : TIE1 to TIE4 | (R53-BIT 0 to 3) |
| TCIN1: TCI1E | (R64-BIT 1) |
| TCIN2 : TCI2E | (R74-BIT 1) |

After deciding priority by P1, P2 each interruption is decided enable/disable by INT0 to INT4. Disable the unnecessary interrupts in your application by initial settings of IIE1-4, IOIE, TIE1-4, and TCI $1 \mathrm{E} / 2 \mathrm{E}$.
INT0 to INT4 are initially 0 (disable)

| MSB 3 |
| :---: |
| R12 |
|  |
| INT2 |

R13

| - | - | INT4 | INT3 |
| :--- | :--- | :--- | :--- |

$$
\begin{aligned}
\text { INTO to INT4 } & =0 & & \text { INT0 to INT4 disable } \\
& =1 & & \text { INT0 to INT4 enable }
\end{aligned}
$$

(Interrupt reset)
After an interrupt occurs, reset the interrupt following the procedures described below.
First, reset IN1 to IN4 interrupt/l O01 to IO04 Interrupt/Timing Interrupt/Timer Counter 1
Interrupt/Timer Counter 2 Interrupt.
Then reset the signal "Release from HALT/STOP M ode" by executing a transfer instruction to R12 or R13. (Re-enable interrupts by executing a transfer instruction to R12 or R13, as you need.)
How to deactivate respective interrupts will be explained in the sections which describe each of the interrupts.


Figure 11 Interruption circuit block

## 2-1. luput/Inoutput Interruption

(Interruption enable/disable)

| MSB 3 |
| :---: |
| PC2 |
|  |
|  |
| IIE4 |

IIE1 = 0 IN1 Interruption disable
1 IN1 Interruption enable
IIE2 = $0 \quad$ IN2 Interruption disable
1 IN2 Interruption enable
IIE3 $=0 \quad$ IN3 Interruption disable
1 IN3 Interruption enable
IIE4 = $0 \quad$ IN4 Interruption disable
1 IN4 Interruption enable
IIE 1 to IIE4 are initially 0 (IN1 to IN4 interruption disable).


IOIE0 = $0 \quad$ IO01 to IO04 Interruption disable
1 IO01 to IO04 Interruption enable

IOIE 0 is initially 0 (disable).
Interruption enable/disable bit can use as interruption reset.
When the interruption occurs and after recognizing the interruption, it can be resetted INT latch by setting IIE1 to IIE 4 or IOIEO.
(Interruption data read)
Interruption Data of IN1 to IN4 can be read by Register file IIN1 to IIN4.

| MSB 3 |
| :---: |
| 2 |
| 1 |
| PC1R IIN4 IIN3 IIN2 <br>  IIN1   |

Example
LD 42O, 0FH (set enable to IN1 to IN4 interruption)
$\downarrow$ IN1 interruption occurs.
Program goes to the address which is decided by each interruption.
LD M, 410 (read IN 1 to IN4 interruption)
$\downarrow$ Recognize which interruption is occurred.
(recognize IN1 interruption is occurred.)
LD 42O, OEH (reset IN1 interruption)
$\downarrow$
LD 12O, 0FH (set enable to INTO to INT2)
$\downarrow$
LD 130, 0FH (set enable to INT3 to INT4)
$\downarrow$
LD 42O, 0FH (set enable to IN1 to IN4 interruption)


Figure 12 IN1 to IN4 interrupts


Figure 13 IO01 to IO04 interrupts

Note:Disabling input or input/output interrupts using PC2 or PC3 is valid only when a rising edge interrupt (see 4, Input/Output ports) is selected. If a level interrupt is selected, disabling interrupts using PC2 or PC3 is invalid.

## 2-2. Timing Interruption

(Timing Interruption selecting)
Timing Interruptions are selectable by Register file (PD1) 128/256, 16/32, 4/8, 1/2.
$128 / 256,16 / 32,4 / 8$ and $1 / 2$ are initially $0(1 \mathrm{~Hz}, 4 \mathrm{~Hz}, 16 \mathrm{~Hz}, 128 \mathrm{~Hz}$ is selected).


| $128 / 256=0$ | 128 Hz | INT. select |  |
| :--- | ---: | :--- | :--- |
| 1 | 256 Hz | INT. select |  |
| $16 / 32=$ | $=0$ | 16 Hz | INT. select |
|  | 1 | 32 Hz | INT. select |
| $4 / 8$ | $=0$ | 4 Hz | INT. select |
| 1 | 8 Hz | INT. select |  |
| $1 / 2$ | $=0$ | 1 Hz | INT. select |
|  | 1 | 2 Hz | INT. select |

(Timing Interruption enable/disable)
Selected Timing Interruption can be controlled enable/disable by Register file (PD3) TIE 1 to TIE4 (R53).
TIE1 to TIE4 are initially 0 (disable).

| MSB 3 |  | 2 | 1 | 0 |
| :--- | :---: | :---: | :---: | :---: |
| LSB |  |  |  |  |
| PD3 | TIE4 | TIE3 | TIE2 | TIE1 |
|  |  |  |  |  |


| TIE1 $=0$ | 1 Hz | or 2 Hz | INT. disable |
| ---: | :--- | :--- | :--- |
| 1 | 1 Hz | or 2 Hz | INT. enable |
| TIE2 $=0$ | 4 Hz | or 8 Hz | INT. disable |
| 1 | 4 Hz | or 8 Hz | INT. enable |
| TIE3 $=0$ | 16 Hz | or 32 Hz | INT. disable |
| 1 | 16 Hz | or 32 Hz | INT. enable |
| TIE4 $=0$ | 128 Hz or 256 Hz | INT. disable |  |
| 1 | 128 Hz or 256 Hz | INT. enable |  |

(Timing Interruption Reset)
The timing interruption for the selected timing interruption is reset by register files TIR1 to TIR4 (PD2W).
TIR1 to TIR4 are initially 0 (disable).

| MSB 3 |
| :---: |
| 2 |
| 1 |
| PD2WTIR4 TIR3 TIR2 TIR1 |

TIR1 $=1 \quad 1 \mathrm{~Hz} \quad$ or $2 \mathrm{~Hz} \quad$ Interruption reset
TIR2 $=14 \mathrm{~Hz} \quad$ or $8 \mathrm{~Hz} \quad$ Interruption reset
TIR3 $=1 \quad 16 \mathrm{~Hz}$ or 32 Hz Interruption reset
TIR4 = $1 \quad 128 \mathrm{~Hz}$ or 256 Hz Interruption reset
(Timing Interruption Read)
Selected Timing Interruption can be read by Register file TI 1 to TI 4 (PDOR).

|  | 3 | 2 | 1 | 0 | LSB |
| :---: | :---: | :---: | :---: | :---: | :---: |
| PDOR | TI4 | TI3 | TI2 | TI1 |  |

TI1: Interruption data of 1 Hz or 2 Hz
TI2: Interruption data of 4 Hz or 8 Hz
TI3: Interruption data of 16 Hz or 32 Hz
TI4: Interruption data of 128 Hz or 256 Hz
(Interruption Edge Selection)
TIN Interruption can be selected the reading point ( $\uparrow$ 个 or $\downarrow$ ) by Register file ESELT. ESTLT is initially 0 (rising edge).


ESELT $=0$ : Interruption at rising Edge of Timing INT.
1: Interruption at down Edge of Timing INT.
Example
LD 510, 01H ( $256 \mathrm{~Hz}, 16 \mathrm{~Hz}, 4 \mathrm{~Hz}$ and 1 Hz select)
$\downarrow$
LD 530, 07H ( 256 Hz disable, $16 \mathrm{~Hz}, 4 \mathrm{~Hz}, 1 \mathrm{~Hz}$ enable)
$\downarrow \quad$ When the 1 Hz interruption occurs.
LD M, 500 (read timing interruption)
$\downarrow \quad$ Recognize 1 Hz interruption.
LD 520, 01H (reset 1 Hz interruption)
Note: A mode transition from CPM1 or CPM3 to CPM2 or from CPM2 to CPM1 or CPM3 causes the timings of binary counters 7-21 to change. Therefore, the timing interrupts also have their timings changed.


Figure 14 Timing interrupt circuit

## 2-3. 8 bits/16 bits Timer Counter Interruption

When Timer/Counter1, 2 overflow or coincide with setting Time/Count each Interruption occurs.


TCI1E/TCI2E $=0$ Timer/Counter1, 2 Interruption disable
= 1 Timer/Counter1, 2 Interruption enable
TCI1R/TCl2R = 1 Timer/Counter1, 2 Interruption reset
TCI $1 \mathrm{E}, \mathrm{TCI} 2 \mathrm{E}$ and TCI 2 R are initially 0 (DISABLE).

## 3. Timer/Counter

The Timer/Counter circuit can use as 8 bit $\times 2 \mathrm{ch}$ or 16 bit $\times 1$ ch Timer/Counter.
And there Time/Counter can be use as general Timer/Counter, Watch Dog Timer, or Multi Interruption Timer.
8 bits/16 bits can be changed by Register file TCPS. And input frequency also can be changed by Register CKS11 to CKS13 and CKS21 to CKS23, as follows.


$$
\begin{array}{rll}
\text { TCPS }= & \begin{array}{lll}
0 & 8 \text { bit } \times 2 \text { ch } & \text { Timer/Counter } \\
= & 1 & 16 \text { bit } \times 1 \text { ch } \quad \text { Timer/Counter }
\end{array} \\
& \binom{\text { When Timer/Counter is used as } 16 \text { bits timer, TIMER2 is used as lower bits. }}{\text { And CKS11 to CKS13 are ignored. Input Frequency is decided by CKS21 to CKS23. }}
\end{array}
$$

CKS11 to CKS13, CKS21 to CKS23 and TCPS are initially 0.
(Timer/Counter1: 1Hz, Timer/Counter2: $64 \mathrm{~Hz}, 8$ bit $\times 2 \mathrm{ch}$ )
CAUTION: 256 kHz of Timer/Counter1, $512 \mathrm{kHz}, 64 \mathrm{kHz}$ of Timer/Counter2 can be used when High-speed OSC is on.

Timer function can be selected by Register file/WDT1 and CMPEN1, 2. Timer/Counter 1 can be used as Watch Dog Timer. And Input Frequency can be controlled by Register file TC1EN and TC2EN. Timer/Counter is resetted by Register file TC1R, TC2R.


Timer/Counter1 setting is made in PE 3.
Timer/Counter2 setting is made in PF 3.
All the bits of PE3 and PF3 are initially 0 .
PE3 WDT1 $=0$ : Used as 8-bit Timer/Counter.
= 1: Used as Watchdog Timer.
CMPEN1 = 0: An interrupt is generated if Timer/Counter1 overflows. (The entire system is reset if WDT1 = 1.)
= 1: An interrupt is generated if Timer/Counter1 values match Time/Count set values (The entire system is reset if WDT $1=1$. )
TC1R = 1: Timer/Counter1 is reset (cleared). Timer/Counter1 resumes counting up after reset. (Refer to the timing chart below.)
TC1EN $=0$ : Reference clock input on Timer/Counter1 is stopped.
= 1: Reference clock input on Timer/Counter 1 is started.
PF3 BIT $0=1$ : Timer/Counter2 cannot be used as 8 -bit Timer/Counter.
$=0$ : Timer/Counter2 is used as 8 -bit Timer/Counter.
CMPEN2 = 0: An interrupt occurs if Timer/Counter2 overflows.
$=1$ : An interrupt occurs if Timer/Counter 2 values match Time/Count set values.
TC2R $=1$ : Timer/Counter2 is reset (cleared). Timer/Counter2 resumes counting up after reset. (Refer to the timing chart below.)
TC2EN $=0$ : Reference clock input on Timer/Counter2 is stopped.
= 1: Reference clock input on Timer/Counter2 is started.
Timing chart for timer/counter $1 / 2$ reset


Timer/Counter1,2 data can read from Register file TCR11 to TCR18 and TCR21 to TCR28.


Timer/Counter1, 2 Comparison data is set by Register file SET11 to SET18 and SET21 to SET28.


SET11 to SET18 and SET21 to SET28 are initially 0.

## CAUTION:

1. When generating an interrupt for the timer/counter by comparing it with the setup value (SET11 to SET18, SET21 to SET28) or resetting the system, set the setup values in register files SET11 to SET18 and SET21 to SET28 before enabling CMPEN1 and CMPEN2.
2. When generating an interrupt by a 16 -bit timer by comparing it with the setup value, enable all of CMPEN1, CMPEN2, TC1EN, and TC2EN using instructions.
3. Since the setup values and timer/counter values both are 0 after initialization, an interrupt is generated or the system is reset immediately when CMPEN1 is enabled.
4. Since a mode transition from CPM1 or CPM3 to CPM2 or from CPM2 to CPM1 or CPM3 causes the timing of the binary counters 7-21 to change, the timer/counters also have their timings changed.
5. Do not change the timer/counter from 8 bits to 16 bits in the middle of operation after the timer/counter has started counting, because such a change could cause the data to be destroyed.


Figure 15 Timer/Counter

## 4. Input/IO Ports (Refer to Figure 21)

TMP04CH01FXXX has 4 inputs and 12 I/O ports.
4 input and $4 \mathrm{I} / \mathrm{O}$ ports have Interruption.
Also, these ports have a mask option available.

## 4-1. $\quad$ Input (IN1 to IN4)

E ach input data can be read by Register file IND1 to IND4.

| MSB 3 |  | 2 | 1 | 0 |
| :---: | :---: | :---: | :---: | :---: |
| LSB |  |  |  |  |
| PA0R | IND4 | IND3 | IND2 | IND1 |

Each input Interruption function can be set enable/disable by Register file IIE 1 tolIE4.


IIE1 to IIE $4=0 \quad$ IN1 to IN4 each Interruption disable

$$
=1 \quad \text { IN1 to IN4 each Interruption enable }
$$

Note 1: IIE1 to IIE4 interrupt disable/enables are register files that are effective when rising-edge interrupts are selected.
When level interrupts are selected, interrupts are disabled/enabled by the data input from ports. In this case, therefore, interrupts cannot be disabled/enabled by the register files. After the level-triggered interrupt is selected, do not apply $61-\mu$ s or less pulse (low speed, two cycles) to the IN pin. Malfunction may occur.

4 inputs (IN1 to IN4) Interruption data can be read by Register file IIN1 to IIN4.

|  | MSB 3 | 2 | 1 | 0 |
| :---: | :---: | :---: | :---: | :---: |
| LSB |  |  |  |  |
|  | IIN4 | IIN3 | IIN2 | IIN1 |

Note 2 Interrupt data IO01 to IO04 cannot be read out. Only the data input form ports can be read out. (refer to Figure 13.)
Interrupt timings (rising edge/evel) can be selected using register file ESELI.


ESELI $=0 \quad$ IN1 to IN4: Interruption at rising edge of input INT.
1 IN1 to IN4: High level of input INT.
Input level-triggered interrupts are possible when ESELI =1. In this case, if interrupts have been enabled by register files INTO-4, the interrupt remain asserted while the input level is high.


Figure 16 Interruption by high level-read

## 4-2. I/O ports (IO01 to IO04, IO11 to IO14, IO21 to IO24)

Each input data can be read by following Register file, when using input port.


IOD01 to IOD04 have interruption, each interruption can be disable/enable by register fileIOIE0. (F our interrupt sources are collectively disabled/enabled by IOIEO.)


IOIEO $=0 \quad$ IO01 to IO04 are disabled. $1 \quad \mathrm{IO} 01$ to IO04 are enabled.

Note: The IO01 to IO04 interrupt disable/enables are the register files that are effective when rising-edge interrupts are selected.
When level interrupts are selected, interrupts are disabled/enabled by the data input from ports. In this case, therefore, interrupts cannot be disabled/enabled by the register files. After the level-triggered interrupt is selected, do not apply 61- $\mathrm{\mu}$ s or less pulse (low speed, two cycles) to the IOO pin. Malfunction may occur.

IO01 to IO04 Interruption recoginized timing (rising edge/High level) can be selected by register file ESELIO.


ESELIO = $0 \quad$ Interruptions IO01 to IO04 are rising edge-triggered.
1 Interruptions IO01 to IO04 level-triggered.
Output data can be read by following register file, when using each I/O ports as output.



Figure 17 IO11 to IO14, IO21 to IO24

## 5. Buzzer Circuit

Buzzer sound can be selected by Register file BZ1, BZ2, BZ3 and 2k/4k.

| MSB 3 | 2 | 1 | 0 | LSB |
| :---: | :---: | :---: | :---: | :---: |
|  | $2 k / 4 k$ | $B Z 3$ | $B Z 2$ | $B Z 1$ |

$2 \mathrm{k} / 4 \mathrm{k}=0 \quad$ Basic frequency 2 kHz
$=1$ Basic frequency 4 kHz



$2 \mathrm{k} / 4 \mathrm{kHz}$


100 $\qquad$
101 $\qquad$ 1. 1. -
$111 \mathrm{BZH}\left(\mathrm{V}_{\mathrm{DD}}\right)$

Figure 18 Buzzer sound

Buzzer sound can be made by software using (000), (001) or (000), (111) setting, as above.
When the Register file R67 is set the above $((B Z 3, B Z 2, B Z 1)=(010)$ to (110)), each Buzzer sound is continuously released setting ( $B Z 3, B Z 2, B Z 1$ ) to (000).

Note:The above buzzer sounds are shown with respect to timings in the CPM2 mode where the high-speed oscillation frequency is 2 MHz , the CPM1/3 mode where the low-speed oscillation frequency is 32 kHz , and in the HALT mode.


Figure 19 Buzzer circuit

## 6. LCD Circuit

The LCD driver circuit has common signals and segment signals to drive $4.5 \mathrm{~V}, 1 / 16$ duty, $1 / 4$ bias LCD.

| Duty | Frame Frequency | Common | Segment |
| :---: | :---: | :---: | :---: |
| $1 / 16$ | 97.5 Hz | COM1 to COM16 | $\mathrm{S}_{1}$ to $\mathrm{S}_{52}$ |

The LCD driver circuit is controlled by Register file both DSTA and DON, and Display RAM is enable on DRCE $=1$


| DON | DSTA | Behavior of LCD Driver |
| :---: | :---: | :--- |
| 0 | 0 | The booster circuit (Quadrupler) is turned off and all common \& segment is <br> fixed to VSS level. <br> LCD shows full off display. |
| 1 | 1 | The booster circuit (Quadrupler) is turned on and LCD driver is enabled to <br> display the data on Display RAM. |
| Other than above |  | The setting other than above can cause mal-function. Do not set. |

DRCE $=0$ disable Display RAM
= 1 enable Display RAM

## CAUTION:

1. Display signals from segment and common are made by the clock which come from low- speed oscillation. Even though the high-speed oscillator may be operating no display is output unless the low-speed oscillator is operating.
2. Register file DON and DSTA are read to Display Driver circuit by the clock which is made by LOWCP. When the LOWCP is needed OFF it is needs max. 103 ms after changing the data of DON and DSTA.


## 7. Mask option

TMP04CH01F XXX has 8 Mask option.

| Mask code | Battery | IN | 100 | 101 | 102 | High-speed OSC | Low-speed OSC | Remark |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| A11F1 | 1.5 V | IN (1) | I/O (1) | I/O (1) | I/O (2) | CR | X'tal | (*) |
| A11F3 | 1.5 V | IN (1) | I/O (1) | I/O (1) | I/O (2) | CR | CR | (*) |
| A32F0 | 3.0 V | IN (1) | I/O (2) | I/O (2) | I/O (2) | X'tal | X'tal | (*) |
| A32F1 | 3.0 V | IN (1) | I/O (2) | I/O (2) | I/O (2) | CR | X'tal | (*) |
| A32F3 | 3.0 V | IN (1) | I/O (2) | I/O (2) | I/O (2) | CR | CR | (*) |
| A33F0 | 3.0 V | IN (1) | I/O (1) | I/O (1) | I/O (1) | X'tal | X'tal | (*) |
| A33F1 | 3.0 V | IN (1) | I/O (1) | I/O (1) | I/O (1) | CR | X'tal | - |
| A33F3 | 3.0 V | IN (1) | I/O (1) | I/O (1) | I/O (1) | CR | CR | (*) |

(*) Under development
(1) Supply voltage

Either 1.5 V or 3.0 V can be selected as the supply voltage. When 3.0 V is used, the low-speed oscillator circuit is driven by output from the internal constant voltage circuit (VREG2) thus reducing current dissipation.


When 1.5 V selected

(2) Input/Output port types

Either CMOS output or P-channel open drain can be selected in units of four bits for the input/output pins: IO01 to IO04, IO11 to IO14, IO21 to IO24. For port types, see the Diagram of Input/Output Port Types.
(3) High-speed oscillator circuit Either the crystal or the CR oscillator circuit can be selected as the high-speed oscillator circuit.

Note: After a reset, the CPU starts operating using the high-speed clock as the system clock. Therefore, even if only a low-speed clock is used for the following processes, the high-speed oscillator circuit must operate normally at startup. Select either the crystal or the CR oscillator circuit and correctly connect the external component (crystal oscillator or resistor) to the $\mathrm{XH}_{\mathrm{IN}} / \mathrm{XH}_{\text {OUT }}$ pin.


When CR oscillator circuit is selected
(4) Low-speed oscillator circuit

Either the crystal or the CR oscillator circuit can be selected as the low-speed oscillator circuit.
Note: A low-speed clock is used in the LCD driver circuit. To display the LCD, the low-speed oscillator circuit must be operated. When the CR oscillator circuit is selected, because both resistor and capacitor are built in, an external component is not required. Connect the $X_{\text {IIN }}$ pin to $V_{S S}$. If the pin is left open, the internal circuit gates become unstable, possibly allowing surge current to flow.


When crystal oscillator circuit is selected


When CR oscillator circuit is selected


Figure 21 I/O port
RIN: Internal pull-down resistor, $400 \mathrm{k} \Omega$ (typ.)
R : Input protective resistor, $100 \Omega$ (typ.)

## Electrical Characteristics

Absolute Maximam Ratings ( $\mathrm{V}_{\mathrm{SS}}=\mathbf{0} \mathrm{V}$ )

| Characteristics | Symbol | Rating | Unit |
| :--- | :---: | :---: | :---: |
| Power supply voltage | $\mathrm{V}_{\mathrm{DD}}$ | -0.3 to 6.0 | V |
| Input voltage | $\mathrm{V}_{\mathrm{IN}}$ | -0.3 to <br> $\mathrm{V}_{\mathrm{DD}}+0.3$ | V |
| Power dissipation $\left(\mathrm{T}_{\mathrm{opr}}=80^{\circ} \mathrm{C}\right)$ | $\mathrm{P}_{\mathrm{D}}$ | 350 | mW |
| Solder temperature | $\mathrm{T}_{\text {sol }}$ | $260(10 \mathrm{~s})$ | ${ }^{\circ} \mathrm{C}$ |
| Storage temperature | $\mathrm{T}_{\text {stg }}$ | -55 to 125 | ${ }^{\circ} \mathrm{C}$ |
| Operating temperature | $\mathrm{T}_{\mathrm{opr}}$ | 0 to 40 | ${ }^{\circ} \mathrm{C}$ |

## Recommended operating condition

1.5 V version (unless otherwise specified, $\mathrm{VSS}=0 \mathrm{~V}, \mathrm{~T}_{\mathrm{opr}}=0^{\circ} \mathrm{C}$ to $40^{\circ} \mathrm{C}$ )

| Characteristics |  | Symbol | Test Condition |  | Min | Typ. | Max | Unit |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| Power supply voltage |  | $V_{D D}$ | $\mathrm{f}_{\text {XTH }}=200 \mathrm{kHz}$ |  | 1.2 | 1.5 | 1.8 | V |
| Oscillation frequency |  | $\mathrm{f}_{\text {XTL1 }}$ | $\mathrm{V}_{\mathrm{DD}}=1.2 \mathrm{~V}$ to 1.8 V | (Note 1) | - | 32.768 | - | kHz |
|  |  | $\mathrm{f}_{\text {XTL2 }}$ | $\mathrm{V}_{\mathrm{DD}}=1.5 \mathrm{~V}$ | (Note 2) | 20 | 33 | 55 |  |
|  |  | $\mathrm{f}_{\text {XTH1 }}$ | $\mathrm{V}_{\mathrm{DD}}=1.5 \mathrm{~V}$ | (Note 3) | - | 200 | - |  |
| Input voltage | " H " level | $\mathrm{V}_{\mathrm{IH}}$ | $V_{D D}=1.3 \mathrm{~V}$ |  | $\begin{aligned} & V_{D D} \\ & \times 0.8 \end{aligned}$ | - | VDD | V |
|  |  |  | $V_{D D}=1.7 \mathrm{~V}$ |  | $\begin{array}{r} V_{D D} \\ \times 0.7 \end{array}$ | - | $V_{D D}$ |  |
|  | "L" level | VIL | $V_{D D}=1.3 \mathrm{~V}$ |  | 0 | - | $\begin{array}{r} V_{D D} \\ \times 0.2 \end{array}$ |  |
|  |  |  | $V_{D D}=1.7 \mathrm{~V}$ |  | 0 | - | $\begin{gathered} V_{D D} \\ \times 0.3 \end{gathered}$ |  |
| Quadrupler capacitance |  | $\mathrm{C}_{1}, \mathrm{C}_{2}$ | - |  | - | 1.0 | - | $\mu \mathrm{F}$ |
| Voltage capacitance |  | $\mathrm{V}_{1}$ | - |  | - | 1.0 | - | $\mu \mathrm{F}$ |
|  |  | $\mathrm{V}_{2}$ | - |  | - | 1.0 | - |  |
|  |  | $V_{3}$ | - |  | - | 1.0 | - |  |
|  |  | $V_{4}$ | - |  | - | 1.0 | - |  |

Note 1: Crystal oscillation circuit is used for low-speed oscillator.
Note 2: Internal CR oscillator is used for low-speed oscillator.
Note 3: An CR oscillating circuit configured with an external $R$ is used for the high-speed oscillator.
Oscillation

| Characteristics | Symbol | Test Condition |  | Min | Typ. | Max | Unit |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| OSC starting voltage | $\mathrm{V}_{\text {STA }}$ | $\mathrm{T}_{\text {STA }}=10 \mathrm{~s}, \mathrm{~T}_{\text {opr }}=25^{\circ} \mathrm{C}$ | (Note 4) | 1.4 | - | - | V |
| OSC holding voltage | V HOLD |  | (Note 4) | 1.2 | - | - | V |
| Frequency of internal CR OSC | fosc1 | $\mathrm{V}_{\mathrm{DD}}=1.5 \mathrm{~V}$ | (Note 5) | 20 | 33 | 55 | kHz |
| Frequency of High-speed OSC | fosc2 | $\begin{aligned} & V_{D D}=1.5 \mathrm{~V} \\ & R_{f}=150 \mathrm{k} \Omega \end{aligned}$ | (Note 6) | - | 200 | - | kHz |

Note 4: Crystal oscillation circuit for low-speed oscillator. Input 1.4 V or more at power-on.
Note 5: Internal CR oscillator for low-speed oscillator.
Note 6: An CR oscillating circuit configured with an external $R$ is used for the high-speed oscillator.

DC Characteristics

| Characteristics | Symbol | Test Condition |  |  | Min | Typ. | Max | Unit |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| Input current (1) <br> (IN1 to IN4, IO01 to IO04, IO11 to IO14,) | $\mathrm{I}_{\mathrm{H} 1}$ | $\mathrm{V}_{\mathrm{DD}}=1.8 \mathrm{~V}, \mathrm{~V}_{\text {IN }}=0 \mathrm{~V}$ |  |  | -500 | - | 500 | nA |
|  | IIL1 | $\mathrm{V}_{\mathrm{DD}}=1.8 \mathrm{~V}, \mathrm{~V}_{\text {IN }}=1.8 \mathrm{~V}$ |  |  | 3.21 | 4.5 | 7.5 | $\mu \mathrm{A}$ |
| Input current (1-2) (IO21 to 24) | $\mathrm{l}_{\mathrm{H} 1}$ | $\mathrm{V}_{\mathrm{DD}}=1.8 \mathrm{~V}, \mathrm{~V}_{\text {IN }}=0 \mathrm{~V}$ |  |  | -500 | - | 500 | nA |
|  | IIL1 | $\mathrm{V}_{\mathrm{DD}}=1.8 \mathrm{~V}, \mathrm{~V}_{\text {IN }}=1.8 \mathrm{~V}$ |  |  | -500 | - | 500 |  |
| Input current (2) (BRESET) | $\mathrm{I}_{\mathrm{IH} 2 \mathrm{~L}}$ <br> (Note) | $V_{D D}=1.8 \mathrm{~V}, \mathrm{~V}_{\mathrm{IN}}=0 \mathrm{~V}$ <br> Low Resistor side |  |  | -60 | -36 | -25.7 | A |
|  | $\mathrm{IIH2H}^{\text {l }}$ | $\mathrm{V}_{\mathrm{DD}}=1.8 \mathrm{~V}, \mathrm{~V}_{\mathrm{IN}}=0 \mathrm{~V}$ <br> High Resistor side |  |  | -6 | -3.6 | -2.57 |  |
| Input current (3) (TEST) | $\mathrm{I}_{\text {IL3 }}$ | $\mathrm{V}_{\mathrm{DD}}=1.8 \mathrm{~V}, \mathrm{~V}_{\text {IN }}=1.8 \mathrm{~V}$ |  |  | 6.43 | 9.0 | 15.0 | $\mu \mathrm{A}$ |
| Output current (1) (IO01 to 04, IO11 to 14) | ${ }^{\mathrm{OH} 1}$ | $\mathrm{V}_{\mathrm{DD}}=1.2 \mathrm{~V}, \mathrm{~V}_{\mathrm{OH}}=0.7 \mathrm{~V}$ |  |  | - | - | -150 | $\mu \mathrm{A}$ |
|  | lOL 1 | $\mathrm{V}_{\mathrm{DD}}=1.2 \mathrm{~V}, \mathrm{~V}_{\mathrm{OL}}=0.5 \mathrm{~V}$ |  |  | 0.89 | 1.25 | 2.08 |  |
| Output current (1-2) (IO21 to 24) | lOH 1 | $\mathrm{V}_{\mathrm{DD}}=1.2 \mathrm{~V}, \mathrm{~V}_{\mathrm{OH}}=0.7 \mathrm{~V}$ |  |  | - | - | -150 | $\mu \mathrm{A}$ |
| Output current (2) (BZ) | lOH 2 | $\mathrm{V}_{\mathrm{DD}}=1.2 \mathrm{~V}, \mathrm{~V}_{\mathrm{OH}}=0.7 \mathrm{~V}$ |  |  | - | - | -500 | $\mu \mathrm{A}$ |
|  | IOL2 | $\mathrm{V}_{\mathrm{DD}}=1.2 \mathrm{~V}, \mathrm{~V}_{\mathrm{OL}}=0.5 \mathrm{~V}$ |  |  | 500 | - | - |  |
| Output current (3) (SEGMENT) | IOH | $\begin{aligned} & \mathrm{V}_{1}=1.125 \mathrm{~V}, \\ & \mathrm{~V}_{2}=2.25 \mathrm{~V}, \\ & \mathrm{~V}_{3}=3.375 \mathrm{~V}, \\ & \mathrm{~V}_{4}=4.5 \mathrm{~V} \end{aligned}$ | $\mathrm{V}_{\mathrm{OH}}=\mathrm{V}_{4}-0.5 \mathrm{~V}$ |  | - | - | -100 | $\mu \mathrm{A}$ |
|  | IOL3 |  | $\mathrm{V}_{\mathrm{OL}}=0.5 \mathrm{~V}$ |  | 100 | - | - |  |
|  | IOM3 |  | $\mathrm{V}_{\mathrm{OM}}=\mathrm{V}_{2}-0.5 \mathrm{~V}$ |  | - | - | -50 |  |
| Output current (4) (COMMON) | IOH 4 | $\begin{aligned} \mathrm{V}_{1} & =1.125 \mathrm{~V}, \\ \mathrm{~V}_{2} & =2.25 \mathrm{~V}, \\ \mathrm{~V}_{3} & =3.375 \mathrm{~V}, \\ \mathrm{~V}_{4} & =4.5 \mathrm{~V} \end{aligned}$ | $\mathrm{V}_{\mathrm{OH}}=\mathrm{V}_{4}-0.5 \mathrm{~V}$ |  | - | - | -100 | $\mu \mathrm{A}$ |
|  | IOL4 |  | $\mathrm{V}_{\mathrm{OL}}=0.5 \mathrm{~V}$ |  | 100 | - | - |  |
|  | IOM4 |  | $\mathrm{V}_{\mathrm{OM}}=\mathrm{V}_{3}-0.5 \mathrm{~V}$ |  | - | - | -50 |  |
|  | lom4 |  | $\mathrm{V}_{\mathrm{OM}}=\mathrm{V}_{1}+0.5 \mathrm{~V}$ |  | 50 | - | - |  |
| Quadrupler output | $\mathrm{V}_{1}$ | $\mathrm{V} \mathrm{V}_{1}=1.125 \mathrm{~V}, \mathrm{Ta}=25^{\circ} \mathrm{C}$ |  |  | 1.075 | 1.125 | 1.175 | V |
|  | $\mathrm{V}_{2}$ |  |  |  | 2.05 | 2.25 | 2.45 |  |
|  | $\mathrm{V}_{3}$ |  |  |  | 3.175 | 3.375 | 3.575 |  |
|  | $\mathrm{V}_{4}$ |  |  |  | 4.3 | 4.5 | 4.7 |  |
| Power supply current (1) (Low-speed crystel oscillation circuit) | IDDOP | $\begin{aligned} & \mathrm{V}_{\mathrm{DD}}=1.5 \mathrm{~V}, \\ & \mathrm{f}_{\mathrm{H}}=200 \mathrm{kHz} \\ & \mathrm{f}_{\mathrm{L}}=32 \mathrm{kHz} \end{aligned}$ <br> At High-speed operation |  | Display ON | - | 48 | 77 | $\mu \mathrm{A}$ |
|  |  |  |  | Display OFF | - | - | 73 |  |
|  | IDDSLOW | $\begin{aligned} & V_{D D}=1.5 \mathrm{~V}, \\ & f_{\mathrm{L}}=32 \mathrm{kHz} \\ & \text { At Low-speed operation } \end{aligned}$ |  | Display ON | - | 9.5 | 12 |  |
|  |  |  |  | Display OFF | - | - | 11 |  |
|  | IDDHOLD | $\begin{aligned} & \mathrm{V}_{\mathrm{DD}}=1.5 \mathrm{~V}, \\ & \mathrm{f}_{\mathrm{L}}=32 \mathrm{kHz} \\ & \text { In HOLD mode } \end{aligned}$ |  | Display ON | - | 4 | 7 |  |
|  |  |  |  | Display OFF | - | - | 6 |  |
|  | IDDSTOP | $\mathrm{V}_{\mathrm{DD}}=1.5 \mathrm{~V}$, In STOP mode |  |  | - | 0.4 | 1 |  |
| Power supply current (2) (Low-speed CR oscillation circuit) | IDDOP | $\mathrm{V}_{\mathrm{DD}}=1.5 \mathrm{~V}$, <br> $\mathrm{f}=200 \mathrm{kHz} \mathrm{f}$ = Internal <br> At High-speed operation |  | Display ON | - | 50 | 77 | $\mu \mathrm{A}$ |
|  |  |  |  | Display OFF | - | - | 73 |  |
|  | IDDSLOW | $V_{D D}=1.5 \mathrm{~V}$, <br> $\mathrm{f}_{\mathrm{L}}=$ Internal <br> At Low-speed operation |  | Display ON | - | 12 | 17 |  |
|  |  |  |  | Display OFF | - | - | 16 |  |
|  | IDDHOLD | $\mathrm{V}_{\mathrm{DD}}=1.5 \mathrm{~V}$, $\mathrm{f}_{\mathrm{L}}=$ Internal In HOLD mode |  | Display ON | - | 5 | 7.5 |  |
|  |  |  |  | Display OFF | - | - | 6.5 |  |
|  | IDDSTOP | $\mathrm{V}_{\mathrm{DD}}=1.5 \mathrm{~V}$, In STOP mode |  |  | - | 0.4 | 1 |  |

Note: The BRESET pin is connected to $\mathrm{V}_{\mathrm{DD}}$ (High level) via two resistors as shown below. To minimize the current that flows at reset, the low resistance consists of a P-channel FET. When the input level is $\mathrm{V}_{\text {SS }}$ (Low level), the FET is off. The resistance is $\infty$. The specified input current (2), $\mathrm{I}_{\mathrm{IH} 2 \mathrm{~L}}$, is the current that flows when the low resistance $=\mathrm{P}$-channel FET is on. However, the low-resistance is off when $\mathrm{VI}_{\mathrm{N}}=0 \mathrm{~V}$, so actual measurement is impossible.

$V_{D D}=$ "High" level

Typical operating condition
3.0 V version (unless otherwise specified, Vss $=0 \mathrm{~V}$, $\mathrm{Topr}_{\mathrm{opr}}=0^{\circ} \mathrm{C}$ to $40^{\circ} \mathrm{C}$ )

| Characteristics |  | Symbol | Test Condition |  | Min | Typ. | Max | Unit |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| Power supply voltage |  | $V_{D D}$ | $\mathrm{fXTH}=2 \mathrm{MHz}$ |  | 2.4 | 3.0 | 3.6 | V |
| Oscillation frequency |  | ${ }_{\text {f XTL1 }}$ | $\mathrm{V}_{\mathrm{DD}}=2.4 \mathrm{~V}$ to 3.6 V | (Note 1) | - | 32.768 | - | kHz |
|  |  | ${ }_{\text {fXTL2 }}$ | $\mathrm{V}_{\mathrm{DD}}=3.0 \mathrm{~V}$ | (Note 2) | 20 | 35 | 60 |  |
|  |  | fXTH1 | $\mathrm{V}_{\mathrm{DD}}=2.4 \mathrm{~V}$ to 3.6 V | (Note 3) | - | 2.0 | - |  |
|  |  | $\mathrm{f}_{\text {XTH2 }}$ | $\mathrm{V}_{\mathrm{DD}}=3.0 \mathrm{~V}$ | (Note 4) | - | 2.0 | - |  |
|  |  |  | $V_{D D}=2.4 \mathrm{~V}$ |  | $\begin{array}{r} V_{D D} \\ \times 0.8 \end{array}$ | - | $V_{D D}$ |  |
|  |  |  | $\mathrm{V}_{\mathrm{DD}}=3.6 \mathrm{~V}$ |  | $\begin{array}{r} V_{D D} \\ \times 0.7 \end{array}$ | - | $\mathrm{V}_{\mathrm{DD}}$ |  |
|  |  |  | $\mathrm{V}_{\mathrm{DD}}=2.4 \mathrm{~V}$ |  | 0 | - | $\begin{aligned} & V_{D D} \\ & V_{D} \end{aligned}$ |  |
|  |  |  | $\mathrm{V}_{\mathrm{DD}}=3.6 \mathrm{~V}$ |  | 0 | - | $\begin{aligned} & V_{D D} \\ & \times 0.3 \end{aligned}$ |  |
| Quadrupler ca |  | $\mathrm{C}_{1}, \mathrm{C}_{2}$ | - |  | - | 1.0 | - | $\mu \mathrm{F}$ |
|  |  | $V_{2}$ | - |  | - | 1.0 | - |  |
| Voltage capa |  | $V_{3}$ | - |  | - | 1.0 | - | F |
|  |  | $V_{4}$ | - |  | - | 1.0 | - |  |
|  |  | $V_{X T}$ | - |  | - | 1.0 | - |  |

Note 1: Crystal oscillation circuit is used for low-speed oscillator.
Note 2: Internal CR oscillator is used for low-speed oscillator.
Note 3: Crystal oscillation circuit is used for high-speed oscillator.
Note 4: An CR oscillating circuit configured with an external $R$ is used for the high-speed oscillator.

## Oscillation

| Characteristics | Symbol | Test Condition |  | Min | Typ. | Max | Unit |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| OSC starting voltage (Low-speed) | $\mathrm{V}_{\text {STA1 }}$ | $\mathrm{T}_{\text {STA }}=10 \mathrm{~s}, \mathrm{~T}_{\text {opr }}=25^{\circ} \mathrm{C}$ |  | 1.85 | - | - | V |
| OSC starting voltage (High-speed) | $V_{\text {STA2 }}$ | $\mathrm{T}_{\text {STA }}=8 \mathrm{~ms}$ |  | 2.10 | - | - | V |
| OSC holding voltage (Low-speed) | V HOLD1 | - |  | 1.65 | - | - | V |
| OSC holding voltage (High-speed) | V HOLD2 | - |  | 1.90 | - | - | V |
| Frequency of internal CR OSC | $\mathrm{f}_{\mathrm{OSC} 1}$ | $\mathrm{V}_{\mathrm{DD}}=3.0 \mathrm{~V}$ | (Note 5) | 20 | 35 | 60 | kHz |
| Frequency of High-speed OSC | fosc2 | $\mathrm{V}_{\mathrm{DD}}=3.0 \mathrm{~V},$ | (Note 6) | - | 2.0 | - | MHz |

Note 5: Internal CR oscillator for low-speed oscillator.
Note 6: An CR oscillating circuit configured with an external $R$ is used for the high-speed oscillator

## DC Characteristics

| Characteristics |  | Symbol | Test Cond | dition | Min | Typ. | Max | Unit |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| Input current (1) (IN1 to IN4) |  | $\mathrm{l}_{\mathrm{IH} 1}$ | $\mathrm{V}_{\mathrm{DD}}=3.6 \mathrm{~V}, \mathrm{~V}_{\text {IN }}=0 \mathrm{~V}$ |  | -500 | - | 500 | nA |
|  |  | IIL1 | $\mathrm{V}_{\mathrm{DD}}=3.6 \mathrm{~V}, \mathrm{~V}_{\text {IN }}=3.6 \mathrm{~V}$ |  | 6.43 | 9.0 | 15.0 | $\mu \mathrm{A}$ |
| Input current (1-2) (IO01 to IO04, IO11 to IO14, IO21 to IO24) | (Note 1) | $\mathrm{I}_{\mathrm{H} 1}$ | $\mathrm{V}_{\mathrm{DD}}=3.6 \mathrm{~V}, \mathrm{~V}_{\text {IN }}=0 \mathrm{~V}$ |  | -500 | - | 500 | $n A$ |
|  |  | IIL1 | $\mathrm{V}_{\mathrm{DD}}=3.6 \mathrm{~V}, \mathrm{~V}_{\text {IN }}=3.6 \mathrm{~V}$ |  | 6.43 | 9.0 | 15.0 | $\mu \mathrm{A}$ |
| Input current (1-3) (IO01 to IO04, IO11 to IO14, IO21 to IO24) | (Note 2) | $\mathrm{l}_{1 \mathrm{H} 1}$ | $\mathrm{V}_{\mathrm{DD}}=3.6 \mathrm{~V}, \mathrm{~V}_{\text {IN }}=0 \mathrm{~V}$ |  | -500 | - | 500 | nA |
|  |  | IIL1 | $\mathrm{V}_{\mathrm{DD}}=3.6 \mathrm{~V}, \mathrm{~V}_{\text {IN }}=3.6 \mathrm{~V}$ |  | -500 | - | 500 | nA |
| Input current (2) (BRESET) |  | IIH2L | $\mathrm{V}_{\mathrm{DD}}=3.6 \mathrm{~V}, \mathrm{~V}_{\mathrm{IN}}=0 \mathrm{~V}$ Low Resistor side |  | -120 | -72 | -51.4 |  |
|  |  | $\mathrm{I}_{\mathrm{IH} 2 \mathrm{H}}$ | $\mathrm{V}_{\mathrm{DD}}=3.6 \mathrm{~V}, \mathrm{~V}_{\mathrm{IN}}=0 \mathrm{~V}$ High Resistor side |  | -12 | -7.2 | -5.14 |  |
| Input current (3) (TEST) |  | $\mathrm{I}_{\text {IL3 }}$ | $\mathrm{V}_{\mathrm{DD}}=3.6 \mathrm{~V}, \mathrm{~V}_{\text {IN }}=3.6 \mathrm{~V}$ |  | 12.9 | 18.0 | 30.0 | $\mu \mathrm{A}$ |
| Output current (1) (IO01 to IO04, IO11 to IO14, IO21 to IO24) |  | $\mathrm{l}_{\mathrm{OH} 1}$ | $\mathrm{V}_{\mathrm{DD}}=2.4 \mathrm{~V}, \mathrm{~V}_{\mathrm{OH}}=1.9 \mathrm{~V}$ |  | - | - | -1.5 | mA |
|  |  | loL1 (Note 1) | $\mathrm{V}_{\mathrm{DD}}=2.4 \mathrm{~V}, \mathrm{~V}_{\mathrm{OL}}=0.5 \mathrm{~V}$ |  | 0.89 | 1.25 | 2.08 | $\mu \mathrm{A}$ |
| Output current (2) (BZ) |  | lOH 2 | $\mathrm{V}_{\mathrm{DD}}=2.4 \mathrm{~V}, \mathrm{~V}_{\mathrm{OH}}=1.9 \mathrm{~V}$ |  | - | - | -2.0 | A |
|  |  | IOL2 | $\mathrm{V}_{\mathrm{DD}}=2.4 \mathrm{~V}, \mathrm{~V}_{\mathrm{OL}}=0.5 \mathrm{~V}$ |  | 2.0 | - | - |  |
| Output current (3) (SEGMENT) |  | IOH3 | $\begin{aligned} & \mathrm{V}_{\mathrm{DD}}=3.0 \mathrm{~V}, \\ & \mathrm{~V}_{\mathrm{REG}}=1.125 \mathrm{~V}, \\ & \mathrm{~V}_{2}=2.25 \mathrm{~V}, \\ & \mathrm{~V}_{3}=3.375 \mathrm{~V}, \\ & \mathrm{~V}_{4}=4.5 \mathrm{~V} \end{aligned}$ | $\begin{aligned} & \mathrm{V}_{\mathrm{OH}}= \\ & \mathrm{V}_{4}-0.5 \mathrm{~V} \end{aligned}$ | - | - | -100 | $\mu \mathrm{A}$ |
|  |  | IOL3 |  | $\mathrm{V}_{\mathrm{OL}}=0.5 \mathrm{~V}$ | 100 | - | - |  |
|  |  | IOM3 |  | $\begin{aligned} & \mathrm{V}_{\mathrm{OM}}= \\ & \mathrm{V}_{2}-0.5 \mathrm{~V} \end{aligned}$ | - | - | -50 |  |
| Output current (4) (COMMON) |  | IOH 4 | $\begin{aligned} & \mathrm{V}_{\mathrm{DD}}=3.0 \mathrm{~V}, \\ & \mathrm{~V}_{\mathrm{REG}}=1.125 \mathrm{~V}, \\ & \mathrm{~V}_{2}=2.25 \mathrm{~V}, \\ & \mathrm{~V}_{3}=3.375 \mathrm{~V}, \\ & \mathrm{~V}_{4}=4.5 \mathrm{~V} \end{aligned}$ | $\begin{aligned} & \mathrm{V}_{\mathrm{OH}}= \\ & \mathrm{V}_{4}-0.5 \mathrm{~V} \end{aligned}$ | - | - | -100 | $\mu \mathrm{A}$ |
|  |  | IOL4 |  | $\mathrm{V}_{\mathrm{OL}}=0.5 \mathrm{~V}$ | 100 | - | - |  |
|  |  | IOM4 |  | $\begin{array}{\|l\|} \hline \mathrm{V}_{\mathrm{OM}}= \\ \mathrm{V}_{3}-0.5 \mathrm{~V} \\ \hline \end{array}$ | - | - | -50 |  |
|  |  | IOM4 |  | $\begin{aligned} & \mathrm{V}_{\mathrm{OM}}= \\ & \mathrm{V}_{1}+0.5 \mathrm{~V} \end{aligned}$ | 50 | - | - |  |
| Voltage regulater output |  | $\mathrm{V}_{\text {REG1 }}$ | $\mathrm{V}_{\mathrm{DD}}=3.0 \mathrm{~V}, \mathrm{Ta}=25^{\circ} \mathrm{C} \quad$ (Note 3) |  | 1.075 | 1.125 | 1.175 | V |
|  |  | $\mathrm{V}_{\text {REG2 }}$ | $\mathrm{V}_{\mathrm{DD}}=3.0 \mathrm{~V}, \mathrm{Ta}=25^{\circ} \mathrm{C} \quad$ (Note 4) |  | - | 1.8 | - |  |
| Quadrupler output |  | $\mathrm{V}_{2}$ | $\begin{aligned} & \mathrm{V}_{\mathrm{DD}}=3.0 \mathrm{~V}, \\ & \mathrm{~V}_{\mathrm{REG}}=1.125 \mathrm{~V}, \mathrm{Ta}=25^{\circ} \mathrm{C} \end{aligned}$ |  | 2.05 | 2.25 | 2.45 | V |
|  |  | $\mathrm{V}_{3}$ |  |  | 3.175 | 3.375 | 3.575 |  |
|  |  | $\mathrm{V}_{4}$ |  |  | 4.3 | 4.5 | 4.7 |  |

Note 1: MASK CODE: A33F0, A33F1, A33F3
Note 2: MASK CODE : A32F0, A32F1, A32F3
Note 3: Voltage regulator for quadrupler
Note 4: Voltage output regulator for low-speed oscillator

| Characteristics | Symbol | Test Condition |  | Min | Typ. | Max | Unit |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| Power supply current (1) <br> (High-speed crystal oscillation circuit) (Low-speed crystal oscillation circuit) | IDDOP | $\mathrm{V}_{\mathrm{DD}}=3.0 \mathrm{~V}$, <br> $\mathrm{f}_{\mathrm{H}}=2 \mathrm{MHz}, \mathrm{f}_{\mathrm{L}}=32 \mathrm{kHz}$ <br> At High-speed operation | Display ON | - | 0.85 | 1.2 | mA |
|  |  |  | Display OFF | - | - | 1.2 |  |
|  | IDDSLOW | $V_{D D}=3.0 \mathrm{~V},$ <br> $\mathrm{f}_{\mathrm{L}}=32 \mathrm{kHz}$ <br> At Low-speed operation | Display ON | - | 17.0 | 24.0 | $\mu \mathrm{A}$ |
|  |  |  | Display OFF | - | - | 23.0 |  |
|  | IDDHOLD | $\begin{aligned} & V_{\mathrm{DD}}=3.0 \mathrm{~V}, \\ & \mathrm{f}_{\mathrm{L}}=32 \mathrm{kHz}, \\ & \mathrm{In} \text { HOLD mode } \end{aligned}$ | Display <br> ON | - | 5.5 | 11.0 |  |
|  |  |  | Display OFF | - | - | 10.0 |  |
|  | IDDStop | $\begin{aligned} & \mathrm{V}_{\mathrm{DD}}=3.0 \mathrm{~V} \\ & \text { In STOP mode } \end{aligned}$ |  | - | 0.8 | 1.2 |  |
| Power supply current (2) <br> (High-speed CR oscillation circuit) <br> (Low-speed crystal oscillation circuit) | IDDOP | $\mathrm{V}_{\mathrm{DD}}=3.0 \mathrm{~V},$ <br> $\mathrm{f}_{\mathrm{H}}=2 \mathrm{MHz}, \mathrm{f}_{\mathrm{L}}=32 \mathrm{kHz}$ <br> At High-speed operation | Display <br> ON | - | 0.85 | 1.5 | mA |
|  |  |  | Display OFF | - | - | 1.5 |  |
|  | IDDSLOW | $\begin{aligned} & \mathrm{V}_{\mathrm{DD}}=3.0 \mathrm{~V}, \\ & \mathrm{f}_{\mathrm{L}}=32 \mathrm{kHz} \\ & \text { At Low-speed operation } \end{aligned}$ | Display ON | - | 17.0 | 24.0 | $\mu \mathrm{A}$ |
|  |  |  | Display OFF | - | - | 23.0 |  |
|  | IDDHOLD | $\begin{aligned} & \mathrm{V}_{\mathrm{DD}}=3.0 \mathrm{~V}, \\ & \mathrm{f}_{\mathrm{L}}=32 \mathrm{kHz} \\ & \text { In HOLD mode } \end{aligned}$ | Display ON | - | 5.5 | 11.0 |  |
|  |  |  | Display OFF | - | - | 10.0 |  |
|  | IDDStop | $\begin{aligned} & \mathrm{V}_{\mathrm{DD}}=3.0 \mathrm{~V} \\ & \text { In STOP mode } \end{aligned}$ |  | - | 0.8 | 1.2 |  |
| Power supply current (3) <br> (High-speed CR oscillation circuit) (Low-speed CR oscillation circuit) | IDDOP | $\mathrm{V}_{\mathrm{DD}}=3.0 \mathrm{~V}$, <br> $\mathrm{f}_{\mathrm{H}}=2 \mathrm{MHz}, \mathrm{f}_{\mathrm{L}}=$ Internal At High-speed operation | Display <br> ON | - | 0.85 | 1.5 | mA |
|  |  |  | Display OFF | - | - | 1.5 |  |
|  | IDDSLOW | $\mathrm{V}_{\mathrm{DD}}=3.0 \mathrm{~V}$ <br> $\mathrm{f}_{\mathrm{L}}=$ Internal <br> At Low-speed operation | $\begin{array}{\|l} \hline \text { Display } \\ \text { ON } \\ \hline \end{array}$ | - | 23.0 | 40.0 | $\mu \mathrm{A}$ |
|  |  |  | Display OFF | - | - | 39.0 |  |
|  | IDDHOLD | $\mathrm{V}_{\mathrm{DD}}=3.0 \mathrm{~V}$, $\mathrm{f}_{\mathrm{L}}=$ Internal In HOLD mode | Display <br> ON | - | 6.5 | 14.0 |  |
|  |  |  | Display OFF | - | - | 12.0 |  |
|  | IDDStop | $\begin{aligned} & \hline \mathrm{V}_{\mathrm{DD}}=3.0 \mathrm{~V} \\ & \text { In STOP mode } \end{aligned}$ |  | - | 0.8 | 1.4 |  |

## Example of Application Circuit



Note 1: Either 1.5 V or 3 V can be selected as the supply voltage.
Note 2: Recommended high-speed oscillator circuit capacitor: 22 pF
Note 3: Recommended low-speed oscillator circuit capacitor: 15 pF
Note 4: Insert a $0.1 \mu \mathrm{~F}$ capacitor between BRESET and $\mathrm{V}_{\text {SS }}$.
Note 5: High-speed CR oscillator circuit (optional)
Note 6: Low-speed CR oscillator circuit (optional)


Note 7: Adjust between 0.1 to $1.0 \mu \mathrm{~F}$ depending on the size of the LCD panel used.

## Package Dimensions

## QFP100-P-1420-0.65A

Unit: mm


Weight: 1.65 g (typ.)

Bare chip

1. Pad assignment

2. Pad location table

| No. | PAD Name | X Point | Y Point |
| :---: | :---: | :---: | :---: |
| 1 | $\mathrm{V}_{1}$ | -1957 | 2653 |
| 2 | $\mathrm{C}_{1}$ | -2253 | 2375 |
| 3 | $\mathrm{C}_{2}$ | -2253 | 2201 |
| 4 | $\mathrm{V}_{\text {SS }}$ | -2253 | 2038 |
| 5 | $\mathrm{V}_{\mathrm{XT}}$ | -2253 | 1871 |
| 6 | BRESET | -2253 | 1699 |
| 7 | XLIN | -2253 | 1519 |
| 8 | XLout | -2253 | 1345 |
| 9 | $V_{\text {DD }}$ | -2253 | 1144 |
| 10 | $\mathrm{XH}_{\text {IN }}$ | -2253 | 944 |
| 11 | XHOUT | -2253 | 772 |
| 12 | TEST | -2253 | 592 |
| 13 | BZ | -2253 | 410 |
| 14 | IN1 | -2253 | 227 |
| 15 | IN2 | -2253 | 59 |
| 16 | IN3 | -2253 | -112 |
| 17 | IN4 | -2253 | -280 |
| 18 | 1001 | -2253 | -468 |
| 19 | 1002 | -2253 | -639 |
| 20 | 1003 | -2253 | -815 |
| 21 | 1004 | -2253 | -986 |
| 22 | 1011 | -2253 | -1162 |
| 23 | 1012 | -2253 | -1333 |
| 24 | 1013 | -2253 | -1509 |
| 25 | 1014 | -2253 | -1680 |
| 26 | IO21 | -2253 | -1856 |
| 27 | 1022 | -2253 | -2027 |
| 28 | 1023 | -2253 | -2203 |
| 29 | 1 O 24 | -2253 | -2374 |
| 30 | $\mathrm{S}_{1}$ | -1960 | -2653 |
| 31 | $\mathrm{S}_{2}$ | -1628 | -2653 |
| 32 | $S_{3}$ | -1460 | -2653 |
| 33 | $\mathrm{S}_{4}$ | -1285 | -2653 |
| 34 | $\mathrm{S}_{5}$ | -1117 | -2653 |
| 35 | $\mathrm{S}_{6}$ | -942 | -2653 |
| 36 | $\mathrm{S}_{7}$ | -774 | -2653 |

$\left(\times 10^{-3} \mathrm{~mm}\right)$

| No. | PAD Name | X Point | Y Point |
| :---: | :---: | :---: | :---: |
| 37 | $\mathrm{S}_{8}$ | -599 | -2653 |
| 38 | S9 | -431 | -2653 |
| 39 | $\mathrm{S}_{10}$ | -256 | -2653 |
| 40 | $\mathrm{S}_{11}$ | -85 | -2653 |
| 41 | $\mathrm{S}_{12}$ | 85 | -2653 |
| 42 | $\mathrm{S}_{13}$ | 258 | -2653 |
| 43 | $\mathrm{S}_{14}$ | 428 | -2653 |
| 44 | $\mathrm{S}_{15}$ | 601 | -2653 |
| 45 | $\mathrm{S}_{16}$ | 771 | -2653 |
| 46 | $\mathrm{S}_{17}$ | 944 | -2653 |
| 47 | $\mathrm{S}_{18}$ | 1114 | -2653 |
| 48 | $\mathrm{S}_{19}$ | 1287 | -2653 |
| 49 | $\mathrm{S}_{20}$ | 1457 | -2653 |
| 50 | $\mathrm{S}_{21}$ | 1630 | -2653 |
| 51 | $\mathrm{S}_{22}$ | 1959 | -2653 |
| 52 | $\mathrm{S}_{23}$ | 2253 | -2283 |
| 53 | $\mathrm{S}_{24}$ | 2253 | -2112 |
| 54 | $\mathrm{S}_{25}$ | 2253 | -1945 |
| 55 | $\mathrm{S}_{26}$ | 2253 | -1774 |
| 56 | $\mathrm{S}_{27}$ | 2253 | -1607 |
| 57 | $\mathrm{S}_{28}$ | 2253 | -1436 |
| 58 | $\mathrm{S}_{29}$ | 2253 | -1269 |
| 59 | $\mathrm{S}_{30}$ | 2253 | -1098 |
| 60 | $\mathrm{S}_{31}$ | 2253 | -931 |
| 61 | $\mathrm{S}_{32}$ | 2253 | -760 |
| 62 | $\mathrm{S}_{33}$ | 2253 | -593 |
| 63 | $\mathrm{S}_{34}$ | 2253 | -422 |
| 64 | $\mathrm{S}_{35}$ | 2253 | -255 |
| 65 | $\mathrm{S}_{36}$ | 2253 | -84 |
| 66 | $\mathrm{S}_{37}$ | 2253 | 84 |
| 67 | $\mathrm{S}_{38}$ | 2253 | 255 |
| 68 | $\mathrm{S}_{39}$ | 2253 | 422 |
| 69 | $\mathrm{S}_{40}$ | 2253 | 593 |
| 70 | $\mathrm{S}_{41}$ | 2253 | 760 |
| 71 | S42 | 2253 | 931 |
| 72 | $\mathrm{S}_{43}$ | 2253 | 1098 |


| No. | PAD Name | X Point | Y Point |
| :---: | :---: | :---: | :---: |
| 73 | $\mathrm{S}_{44}$ | 2253 | 1269 |
| 74 | $\mathrm{S}_{45}$ | 2253 | 1436 |
| 75 | $\mathrm{S}_{46}$ | 2253 | 1607 |
| 76 | $\mathrm{S}_{47}$ | 2253 | 1774 |
| 77 | $\mathrm{S}_{48}$ | 2253 | 1945 |
| 78 | $\mathrm{S}_{49}$ | 2253 | 2112 |
| 79 | $\mathrm{S}_{50}$ | 2253 | 2283 |
| 80 | $\mathrm{S}_{51}$ | 1959 | 2653 |
| 81 | $\mathrm{S}_{52}$ | 1629 | 2653 |
| 82 | COM16 | 1459 | 2653 |
| 83 | COM15 | 1286 | 2653 |
| 84 | COM14 | 1116 | 2653 |
| 85 | COM13 | 943 | 2653 |
| 86 | COM12 | 773 | 2653 |
| 87 | COM11 | 600 | 2653 |
| 88 | COM10 | 430 | 2653 |
| 89 | СОМ9 | 257 | 2653 |
| 90 | COM8 | 87 | 2653 |
| 91 | COM7 | -87 | 2653 |
| 92 | COM6 | -257 | 2653 |
| 93 | COM5 | -430 | 2653 |
| 94 | COM4 | -600 | 2653 |
| 95 | COM3 | -773 | 2653 |
| 96 | COM2 | -943 | 2653 |
| 97 | COM1 | -1116 | 2653 |
| 98 | $\mathrm{V}_{4}$ | -1291 | 2653 |
| 99 | $V_{3}$ | -1468 | 2653 |
| 100 | $\mathrm{V}_{2}$ | -1638 | 2653 |

## RESTRICTIONS ON PRODUCT USE

- TOSHIBA is continually working to improve the quality and reliability of its products. Nevertheless, semiconductor devices in general can malfunction or fail due to their inherent electrical sensitivity and vulnerability to physical stress. It is the responsibility of the buyer, when utilizing TOSHIBA products, to comply with the standards of safety in making a safe design for the entire system, and to avoid situations in which a malfunction or failure of such TOSHIBA products could cause loss of human life, bodily injury or damage to property. In developing your designs, please ensure that TOSHIBA products are used within specified operating ranges as set forth in the most recent TOSHIBA products specifications. Also, please keep in mind the precautions and conditions set forth in the "Handling Guide for Semiconductor Devices," or "TOSHIBA Semiconductor Reliability Handbook" etc..
- The TOSHIBA products listed in this document are intended for usage in general electronics applications (computer, personal equipment, office equipment, measuring equipment, industrial robotics, domestic appliances, etc.). These TOSHIBA products are neither intended nor warranted for usage in equipment that requires extraordinarily high quality and/or reliability or a malfunction or failure of which may cause loss of human life or bodily injury ("Unintended Usage"). Unintended Usage include atomic energy control instruments, airplane or spaceship instruments, transportation instruments, traffic signal instruments, combustion control instruments, medical instruments, all types of safety devices, etc.. Unintended Usage of TOSHIBA products listed in this document shall be made at the customer's own risk.
- The products described in this document are subject to the foreign exchange and foreign trade laws.
- The information contained herein is presented only as a guide for the applications of our products. No responsibility is assumed by TOSHIBA CORPORATION for any infringements of intellectual property or other rights of the third parties which may result from its use. No license is granted by implication or otherwise under any intellectual property or other rights of TOSHIBA CORPORATION or others.
- The information contained herein is subject to change without notice.

